Disturbance of Copper Homeostasis Is a Mechanism for Homocysteine-Induced Vascular Endothelial Cell Injury

نویسندگان

  • Daoyin Dong
  • Biao Wang
  • Wen Yin
  • Xueqing Ding
  • Jingjing Yu
  • Y. James Kang
چکیده

Elevation of serum homocysteine (Hcy) levels is a risk factor for cardiovascular diseases. Previous studies suggested that Hcy interferes with copper (Cu) metabolism in vascular endothelial cells. The present study was undertaken to test the hypothesis that Hcy-induced disturbance of Cu homeostasis leads to endothelial cell injury. Exposure of human umbilical vein endothelial cells (HUVECs) to concentrations of Hcy at 0.01, 0.1 or 1 mM resulted in a concentration-dependent decrease in cell viability and an increase in necrotic cell death. Pretreatment of the cells with a final concentration of 5 µM Cu in cultures prevented the effects of Hcy. Hcy decreased intracellular Cu concentrations. HPLC-ICP-MS analysis revealed that Hcy caused alterations in the distribution of intracellular Cu; more Cu was redistributed to low molecular weight fractions. ESI-Q-TOF detected the formation of Cu-Hcy complexes. Hcy also decreased the protein levels of Cu chaperone COX17, which was accompanied by a decrease in the activity of cytochrome c oxidase (CCO) and a collapse of mitochondrial membrane potential. These effects of Hcy were all preventable by Cu pretreatment. The study thus demonstrated that Hcy disturbs Cu homeostasis and limits the availability of Cu to critical molecules such as COX17 and CCO, leading to mitochondrial dysfunction and endothelial cell injury.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involvement of TRPM7 calcium channels and PI3K/AKT kinase pathway in protective effect of vascular endothelial growth factor in amyloid beta-induced model of Alzheimer’s disease

Background and Objective: Alzheimer’s disease (AD) is a progressive neurodegenerative disorder, in which cortical and hippocampus neurons death is the main target of neurodegeneration. In addition to extracellular beta amyloid accumulation and the production of neural tangles, one of effective factors in the pathology of Alzheimer's disease is vascular injury in the elderly including disturbanc...

متن کامل

Endothelial cell injury due to copper-catalyzed hydrogen peroxide generation from homocysteine.

We have examined whether the toxic effects of homocysteine on cultured endothelial cells could result from the formation and action of hydrogen peroxide. In initial experiments with a cell-free system, micromolar amounts of copper were found to catalyze an oxygen-dependent oxidation of homocysteine. The molar ratio of homocysteine oxidized to oxygen consumed was approximately 4.0, which suggest...

متن کامل

Adiponectin alleviate blood hypercoagulability via inhibiting endothelial cell apoptosis induced by oxidative stress in septic rats

Objective(s): The purpose of this study was to detect the protective effects of adiponectin on coagulation dysfunction and its mechanism in sepsis of rats.Materials and Methods: The experimental samples were composed of sham group,   model group that was underwent cecal ligation and puncture (CLP) and three adiponectin treatment groups that treated by adiponectin with different dose (72 μg/kg, ...

متن کامل

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Mechanism of extracellular ATP- and adenosine-induced apoptosis of cultured pulmonary artery endothelial cells.

Apoptosis may be important in the exacerbation of endothelial cell injury or limitation of endothelial cell proliferation. We have found that extracellular ATP (exATP) and adenosine cause endothelial apoptosis and that the development of apoptosis is linked to intracellular metabolism of adenosine [Dawicki, D. D., D. Chatterjee, J. Wyche, and S. Rounds. Am. J. Physiol. 273 ( Lung Cell Mol. Phys...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013